Unsupervised Learning Aided by Clustering and Local-Global Hierarchical Analysis in Knowledge Exploration
نویسندگان
چکیده
1. Introduction From a traditional point of view, knowledge exploration can be categorized into supervised learning and unsupervised learning (Jordan and Jacobs 1994). In the last decade, there have been research activities on supervised learning approaches and techniques, whereby class information is available before any knowledge exploration takes place. The most utilized approach is to achieve a predetermined independent measurement in order to preferentially target classes. Then a classification algorithm is applied in the data pre-processing stage (Liu and Motoda 1998, Liu and Yu 2005). However, this approach is not robust to be effectively applied on features with irregular sizes or nonrecurring, high-dimensional variables. Unsupervised learning is a recent approach in knowledge exploration. It is widely used on/with unlabeled data, such as extracting relevance that exists in records. Unsupervised learning is an important supplementary method to category data since it could increase the precision of clustering results. Unlike supervised learning, unsupervised learning attempts
منابع مشابه
High-Dimensional Unsupervised Active Learning Method
In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...
متن کاملA clustering approach for mineral potential mapping: A deposit-scale porphyry copper exploration targeting
This work describes a knowledge-guided clustering approach for mineral potential mapping (MPM), by which the optimum number of clusters is derived form a knowledge-driven methodology through a concentration-area (C-A) multifractal analysis. To implement the proposed approach, a case study at the North Narbaghi region in the Saveh, Markazi province of Iran, was investigated to discover porphyry ...
متن کاملDIAGNOSIS OF BREAST LESIONS USING THE LOCAL CHAN-VESE MODEL, HIERARCHICAL FUZZY PARTITIONING AND FUZZY DECISION TREE INDUCTION
Breast cancer is one of the leading causes of death among women. Mammography remains today the best technology to detect breast cancer, early and efficiently, to distinguish between benign and malignant diseases. Several techniques in image processing and analysis have been developed to address this problem. In this paper, we propose a new solution to the problem of computer aided detection and...
متن کاملخوشهبندی اسناد مبتنی بر آنتولوژی و رویکرد فازی
Data mining, also known as knowledge discovery in database, is the process to discover unknown knowledge from a large amount of data. Text mining is to apply data mining techniques to extract knowledge from unstructured text. Text clustering is one of important techniques of text mining, which is the unsupervised classification of similar documents into different groups. The most important step...
متن کاملUnsupervised Classification of Complex Clusters in Networks of Spiking Neurons
For unsupervised clustering in a network of spiking neurons we develop a temporal encoding of continuously valued data to obtain arbitrary clustering capacity and precision with an efficient use of neurons. Input variables are encoded independently in a population code by neurons with 1-dimensional graded and overlapping sensitivity profiles. Using a temporal Hebbian learning rule, the network ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- JDIM
دوره 5 شماره
صفحات -
تاریخ انتشار 2007